Inorganic Chemistry

Inorganic Chemistry

1. Chemical periodicity

2. Structure and bonding in homo- and heteronuclear molecules, including shapes of molecules (VSEPR Theory).

3. Concepts of acids and bases, Hard-Soft acid base concept, Non-aqueous solvents.

4. Main group elements and their compounds: Allotropy, synthesis, structure and bonding, industrial importance of the compounds.

5. Transition elements and coordination compounds: structure, bonding theories, spectral and magnetic properties, reaction mechanisms.

6. Inner transition elements: spectral and magnetic properties, redox chemistry, analytical applications.

7. Organometallic compounds: synthesis, bonding and structure, and reactivity. Organometallics in homogeneous catalysis.

8. Cages and metal clusters.

9. Analytical chemistry- separation, spectroscopic, electro- and thermoanalytical methods.

10. Bioinorganic chemistry: photosystems, porphyrins, metalloenzymes, oxygen transport, electron- transfer reactions; nitrogen fixation, metal complexes in medicine.

11. Characterisation of inorganic compounds by IR, Raman, NMR, EPR, Mössbauer, UV-vis, NQR, MS, electron spectroscopy and microscopic techniques.

12. Nuclear chemistry: nuclear reactions, fission and fusion, radio-analytical techniques and activation analysis.

**Physical Chemistry:**

1. Basic principles of quantum mechanics: Postulates; operator algebra; exactly- solvable systems: particle-in-a-box, harmonic oscillator and the hydrogen atom, including shapes of atomic orbitals; orbital and spin angular momenta; tunneling.

2. Approximate methods of quantum mechanics: Variational principle; perturbation theory up to second order in energy; applications.

3. Atomic structure and spectroscopy; term symbols; many-electron systems and antisymmetry principle.

4. Chemical bonding in diatomics; elementary concepts of MO and VB theories; Huckel theory for conjugated p-electron systems.

5. Chemical applications of group theory; symmetry elements; point groups; character tables; selection rules.

6. Molecular spectroscopy: Rotational and vibrational spectra of diatomic molecules; electronic spectra; IR and Raman activities – selection rules; basic principles of magnetic resonance.

7. Chemical thermodynamics: Laws, state and path functions and their applications; thermodynamic description of various types of processes; Maxwell’s relations; spontaneity and equilibria; temperature and pressure dependence of thermodynamic quantities; Le Chatelier principle; elementary description of phase transitions; phase equilibria and phase rule; thermodynamics of ideal and non-ideal gases, and solutions.

8. Statistical thermodynamics: Boltzmann distribution; kinetic theory of gases; partition functions and their relation to thermodynamic quantities – calculations for model systems.

9. Electrochemistry: Nernst equation, redox systems, electrochemical cells; Debye-Huckel theory; electrolytic conductance – Kohlrausch’s law and its applications; ionic equilibria; conductometric and potentiometric titrations.

10. Chemical kinetics: Empirical rate laws and temperature dependence; complex reactions; steady state approximation; determination of reaction mechanisms; collision and transition state theories of rate constants; unimolecular reactions; enzyme kinetics; salt effects; homogeneous catalysis; photochemical reactions.

11. Colloids and surfaces: Stability and properties of colloids; isotherms and surface area; heterogeneous catalysis.

12. Solid state: Crystal structures; Bragg’s law and applications; band structure of solids.

13. Polymer chemistry: Molar masses; kinetics of polymerization.

14. Data analysis: Mean and standard deviation; absolute and relative errors; linear regression; covariance and correlation coefficient.